
中國文化大學 101 學年度碩士班考試入學招生考試

系所組:化學系應用化學碩士班

日期節次:101年3月17日第3節13:00~14:30

科目:物理化學

- 1. (a) One mole of an ideal gas at 300 K is reversibly and isothermally compressed from 25.0 L to 10.0 L. Suppose the surrounding is also at 300 K, calculate ΔS and $\Delta S_{\text{surrounding}}$. (10 points)
 - (b) Under the same condition of Problem 1(a) except the compression is now done by a constant external pressure 2.49×10^5 Pa, is the process spontaneous or non-spontaneous? Why? (10 points)
- 2. A prolate molecule like CH₃I has moment of inertia $I_a < I_b = I_c$, show that its rotational energy can be expressed by $E_{JK}(cm^{-1}) = BJ(J+1) + K^2(A-B)$, where J and K are quantum numbers, A and B are rotational constants. (10 points)
- 3. Draw the π orbitals of benzene and fill in the π electrons. (10 points)
- 4. Derive the equilibrium constant of reaction $CaCO_{3(s)} \leftarrow CaO_{(s)} + CO_{2(g)}$ in terms of substance activities. (10 points)
- Suppose an enzyme catalyzed reaction has mechanism E + S → ES, ES → E + S,
 ES → E + P. Here E, S, ES and P stand for the enzyme, substrate, intermediate,
 and product, respectively. If the initial concentration of E is [E]₀, derive the rate law by the steady-state approximation. (10 points)
- 6. (a) SO₂ is a C_{2v} molecule and the p_x orbitals are defined as perpendicular to this exam paper. Now with the p_x orbitals of S, O_A, and O_B atoms as the basis (p_S, p_A, p_B), derive the matrix representation of the C₂ axis with respect to this basis. (10 points)
 - (b) If we have a new basis (p_S, p₁, p₂), where p₁=p_A+p_B and p₂=p_A-p_B, derive the matrix representation of the C₂ axis with respect to this new basis. (10 points)
- 7. Term explanations: (5 points for each)
 - (a) The third law of thermodynamics.
 - (b) Arrhenius preexponential factor.
 - (c) The uncertainty principle.
 - (d) Normalized wave functions.

